

 1

Realtime Online Core API V3

Overview

The Realtime Online API allows the automated retrieval of readings from
devices which have been configured in Realtime Online, as well as providing
means to query meta data about the sensors which are available.

Version 3 of the API adds full support for LoRaWAN and NBIoT devices.

To upgrade from API v2.x

• Upgrade your sensor_id storage to store Sensor IDs as strings instead of
integers.

• Handle new error status response codes and messages.
• Handle 429 Usage Limit Exceeded error code.
• (optional) Implement Get Latest Record Date action.

Configuration Of Devices

A single transmitter has a single ID associated with it, but it may transmit data
from more than one data point (such as temperature, humidity or pulse
count) or from more than one source (such as multi-channel meters each
taking a separate pulse count). In order to make use of a transmitter in
Realtime Online, its ID must be entered in the sensor setup page, and one or
more data points and/or channels must be selected. Only the selected
channels will be available in Realtime Online and its API.

In Realtime Online, configured transmitters belong to a system, and systems
are grouped in organisations.

Additional meta data can be associated with sensors within an organisation,
using the Sensor Export Fields page

Anatomy Of A Request

Requests to the API are made over the HTTP protocol. An API request is
encoded as JSON placed in the body of a HTTP POST request, and the HTTP
response body will contain the JSON encoded API response.

 2

URL

The API can be accessed through the following URL:

https://www.realtime-online.com/api/v3/json/

The second part of the path indicates the version of the API. This is treated as
the MAJOR version as described by Semantic Versioning,
meaning that for a given version, changes will never be made such that a
valid request or response becomes invalid.

Authentication

The API uses a token to uniquely identify the system or organisation being
operated upon, and a secret shared key to authenticaterequests and
responses. These are configured through the Realtime Online web interface.

The JSON body of a request might look something like this:

{
 "action": "getSensors",
 "request_date": "2020-02-04T11:59:28+00:00",
 "systems": [
 2571
]
}

You should have been informed when you asked for API credentials whether
or not replay protection was enabled for them. Please contact our support
team if you are unsure.

If replay protection is enabled for your credentials, authenticate the request
using the following procedure:

1. The current date/time is included as request_date in the body of the
request.

2. The body of the request is taken as a string.
3. The secret shared key is appended to this string.
4. The SHA-256 hash of the string is taken.
5. The hash is placed in the X-RT2-API-Hash header of the request, along

with the token, as in the example below.

 3

Content-Type: application/json
X-RT2-API-Token: db30b7e74e13
X-RT2-API-Hash:
f8119ac69dbe780e18f0d6ba31ab88a25a2b351025912508c2a91c8d91e69617

Note that:

• For hashing, the body of the request is treated as a string, i.e. the fact
that it is JSON is ignored and no changes are made to its formatting.

• The current time must be included in the request to protect against
replay attacks. The request will be rejected if the time in the request
differs from the time on the server at the time the request is received,
save for a small error margin.

If replay protection is disabled for your credentials you do not need to
include the X-RT2-API-Hash header or the request_date in the body.

Responses

The API uses HTTP status codes in the response to indicate success or failure
fulfilling the request. The status code is mirrored in the response body, and
may be accompanied by a message detailing the reason for failure.

An example failure response:

{
 "status": 500,
 "message": "An unexpected error occurred processing the request.",
 "request_date": "2020-02-04T12:08:12+00:00"
}

The request_payload field may be present, containing the original request
either as a string or as a JSON object.

An example success response:

{
 "status": 200,
 "request_date": "2020-02-04T12:08:12+00:00"
}

A successful response will also have fields containing the data that was
requested. The fields required for specific requests, and those given in their
responses, are detailed later in this document.

 4

Types Of Request

The action field of the request object determines the type of the request,
and what fields are required to be present in the request. All requests require
this field.

The request_date field is only mandatory if replay protection is enabled.

Get Available Systems

{
 "action": "getSystems",
 "request_date": "2020-02-04T13:39:26+00:00"
}

The getSystems action requires no additional parameters.

{
 "action": "getSystems",
 "status": 200,
 "message": "OK",
 "request_date": "2020-02-04T13:39:26+00:00",
 "systems": [
 {
 "system_id": 2571,
 "name": "~ Test System ~",
 "timezone": "Europe/London",
 "sensors_count": 21
 }
]
}

The response includes the systems field, which is an array of objects, one for
each system, with the following fields:

Field Meaning

system_id

Uniquely identifies the system to
Realtime Online.

name

The name as configured in Realtime
Online.

timezone

The configured timezone of the
system. This does not affect dates;
they are all required to be in ISO

 5

8601 format and include a time
offset.

sensors_count

The number of sensors which have
been configured on the system.

Get Sensors

{
 "action": "getSensors",
 "request_date": "2020-02-04T13:50:13+00:00",
 "systems": [2571]
}

The getSensors action requires a single extra parameter: systems, an array of
integers, which specifies the IDs of systems whose sensors should be retrieved.

{
 "action": "getSensors",
 "status": 200,
 "message": "OK",
 "request_date": "2020-07-22T15:44:30+02:00",
 "sensors": [
 {
 "sensor_id": "6110551",
 "system_id": 2571,
 "type_id": 5,
 "names": {
 "Battery": "6110551"
 },
 "units": {
 "Battery": "V"
 },
 "meta_data": {
 "Battery": {}
 }
 },
 {
 "sensor_id": "6322990",
 "system_id": 2571,
 "type_id": 108,
 "names": {
 "temperature": "New Sensor"
 },
 "units": {
 "temperature": ""
 },
 "meta_data": {
 "temperature": {}
 }
 },
 {
 "sensor_id": "6321402",
 "system_id": 2571,
 "type_id": 116,

 6

 "names": {
 "channel_1_energy": "Export Test Threephase E1",
 "channel_1_current": "Export Test Threephase C1",
 "channel_2_energy": "Export Test Threephase E2",
 "channel_2_current": "Export Test Threephase C2",
 "channel_3_energy": "Export Test Threephase E3",
 "channel_3_current": "Export Test Threephase C3"
 },
 "units": {
 "channel_1_energy": "kWh",
 "channel_1_current": "A",
 "channel_2_energy": "kWh",
 "channel_2_current": "A",
 "channel_3_energy": "kWh",
 "channel_3_current": "A"
 },
 "meta_data": {
 "channel_1_energy": [],
 "channel_1_current": [],
 "channel_2_energy": [],
 "channel_2_current": [],
 "channel_3_energy": [],
 "channel_3_current": []
 }
 },
 {
 "sensor_id": "9704474",
 "system_id": 2571,
 "type_id": 1009,
 "names": {
 "temperature": "Blah Temperature",
 "door_status": "Blah Door",
 "door_countt": "Blah Door Count",
 "light_status": "Blah Light Status",
 "light_count": "Blah Light Count"
 },
 "units": {
 "temperature": "°C",
 "door_status": [
 {
 "value": 0,
 "unit": "standby"
 },
 {
 "value": 1,
 "unit": "running"
 }
],
 "door_count": "",
 "light_status": [
 {
 "value": 0,
 "unit": "armed"
 },
 {
 "value": 1,
 "unit": "disarmed"
 }
],
 "light_count": ""
 },

 7

 "meta_data": {
 "temperature": {
 "custom_meta_field": "custom meta value"
 },
 "door_status": {},
 "door_count": {},
 "light_status": {},
 "light_count": {}
 }
 }
]
}

The response includes the sensors field, which is an array of objects, one for
each sensor, with the following fields:

Field Meaning

sensor_id

The ID of the sensor, matching the
device label. This is a string.

system_id

The ID of the system to which the
sensor belongs.

type_id

Identifies the type of the sensor,
which can be queried using the
getSensorTypes action described
below.

names

An object with a key for every data
point configured in Realtime Online,
whose value is the name configured
therein.

units

An object with a key for every data
point configured, whose value is
either the name of the unit, or in the
case of an enumerated type of
data, an array of objects for each
possible value that the data can
take, giving the name for that value.

meta_data

An object with a key for every data
point configured in Realtime Online,
containing key value pairs for each
custom meta field defined in Sensor
Export Fields. The keys are derived
from the names entered into
Realtime Online by taking the lower

 8

case name string, and replacing
spaces with underscores: Custom
Meta Field becomes
custom_meta_field.

Get Sensor Types

{
 "action": "getSensorTypes",
 "request_date": "2020-02-04T14:05:25+00:00"
}

The getSensorTypes request requires no extra parameters.

{
 "action": "getSensorTypes",
 "status": 200,
 "message": "OK",
 "request_date": "2020-02-04T14:05:25+00:00",
 "sensor_types": [
 {
 "type_id": 1,
 "name": "SmartRF Temperature",
 "fields": [
 "temperature",
 "temperature_min",
 "temperature_max"
]
 },
 {
 "type_id": 2,
 "name": "SmartRF Pulse/Status",
 "fields": [
 "status",
 "pulse_count"
]
 },
 {
 "type_id": 4,
 "name": "SmartRF 3-Channel Meter",
 "fields": [
 "channel_1_energy",
 "channel_2_energy",
 "channel_3_energy"
]
 },
 {
 "type_id": 113,
 "name": "SmartRF Dual Status/Pulse",
 "fields": [
 "channel_1_status",
 "channel_1_pulse_count",
 "channel_2_status",
 "channel_2_pulse_count"

 9

]
 }
]
}

The response includes the sensor_types field, which is an array of objects with
the following fields:

Field Meaning

type_id

Uniquely identifies the transmitter
type.

name

Describes the transmitter type.

fields

An array of strings listing all available
data points that can be configured
in Realtime Online.

Get Sensor Records

{
 "action": "getSensorRecords",
 "request_date": "2020-02-04T14:11:26+00:00",
 "sensors": [
 {
 "sensor_id": "6322905",
 "start_date": "2019-05-09T00:00:00+01:00",
 "end_date": "2019-05-09T01:00:00+01:00"
 },
 {
 "sensor_id": "6311678",
 "start_date": "2019-05-09T00:00:00+01:00",
 "end_date": "2019-05-09T01:00:00+01:00"
 }
]
}

The getSensorRecords request requires an array of systems, each containing
its system_id and an array of sensors to request. Each sensor requires the
following fields:

Field Meaning

sensor_id

The ID of the sensor, as returned by
getSensors.

start_date

The start of the period for which to
request data from this sensor.

 10

end_date

The end of the period for which to
request data from this sensor.

{
 "action": "getSensorRecords",
 "status": 200,
 "message": "OK",
 "request_date": "2020-02-04T14:11:26+00:00",
 "systems": [
 {
 "system_id": 2571,
 "sensors": [
 {
 "sensor_id": "6322905",
 "start_date": "2019-05-09T00:00:00+01:00",
 "end_date": "2019-05-09T01:00:00+01:00",
 "names": {
 "temperature": "Export Test Temp",
 "humidity": "Export Test Humidity"
 },
 "units": {
 "temperature": "°C",
 "humidity": "%RH"
 },
 "data": [
 {
 "record_date": "2019-05-08T23:03:28+00:00",
 "values": {
 "temperature": 19.3453,
 "humidity": 57.2858
 }
 },
 {
 "record_date": "2019-05-08T23:08:45+00:00",
 "values": {
 "temperature": 19.3453,
 "humidity": 57.3163
 }
 },
 {
 "record_date": "2019-05-08T23:56:15+00:00",
 "values": {
 "temperature": 19.2488,
 "humidity": 57.6368
 }
 }
]
 },
 {
 "sensor_id": "6311678",
 "start_date": "2019-05-09T00:00:00+01:00",
 "end_date": "2019-05-09T01:00:00+01:00",
 "names": {
 "channel_1_status": "6311678 Status 1",
 "channel_1_pulse_count": "6311678 Pulse Count 1",
 "channel_2_status": "6311678 Status 2",
 "channel_2_pulse_count": "6311678 Pulse 2"
 },
 "units": {

 11

 "channel_1_status": [
 {
 "value": 0,
 "unit": "off"
 },
 {
 "value": 1,
 "unit": "on"
 }
],
 "channel_1_pulse_count": "kWh",
 "channel_2_status": [
 {
 "value": 0,
 "unit": "armed"
 },
 {
 "value": 1,
 "unit": "disarmed"
 }
],
 "channel_2_pulse_count": "Unit"
 },
 "data": [
 {
 "record_date": "2019-05-08T23:03:48+00:00",
 "values": {
 "channel_1_status": 0,
 "channel_2_status": 0
 }
 },
 {
 "record_date": "2019-05-08T23:11:48+00:00",
 "values": {
 "channel_1_status": 0,
 "channel_2_status": 0
 }
 },
 {
 "record_date": "2019-05-09T00:00:00+00:00",
 "values": {
 "channel_1_pulse_count": 0,
 "channel_2_pulse_count": 0
 }
 }
]
 },
 {
 "sensor_id": "6311678",
 "start_date": "2019-05-09T00:00:00+01:00",
 "end_date": "2019-05-09T01:00:00+01:00"
 }
]
 }
]
}

The response is also grouped into systems, inside which each sensor shares
the names and units fields with the getSensors response. For each sensor,
the data key is an array of objects, one object for each record.

 12

It's important to note that each record will not necessarily contain a value for
every data point that the sensor has. The most common situation in which this
may occur is when a mixture of pulse count and non-pulse count points is
configured for the sensor. The pulse counts will be converted into
consumption data on fifteen minute intervals, while the non-pulse-count data
will be returned for the intervals at which the sensor transmitted to the
gateway.

Get Latest Record Date

{
 "action": "getLatestRecordDate",
 "request_date": "2020-02-04T14:11:26+00:00",
 "systems": [
 {
 "system_id": 2571,
 "sensors": [
 {
 "sensor_id": "6322905"
 },
 {
 "sensor_id": "6311678"
 }
]
 }
]
}

The getLatestRecordDate request requires an array of systems, each
containing its system_id and an array of sensors to request.

{
 "action": "getLatestRecordDate",
 "status": 200,
 "message": "OK",
 "request_date": "2020-02-04T14:11:26+00:00",
 "systems": [
 {
 "system_id": 2571,
 "sensors": [
 {
 "sensor_id": "6322905",
 "latest_record_date": "2019-05-09T00:00:00+01:00"
 },
 {
 "sensor_id": "6311678",
 "latest_record_date": "2019-05-09T00:00:00+01:00"
 }
]
 }
]
}

 13

The response is grouped into systems, inside which each sensor contains the
following fields.

Field Meaning

sensor_id

The ID of the sensor, matching the
device label. This is a string.

latest_record_date

The date of the most recent record
received from the sensor, in an ISO-
8601 format. This field will be absent
if status returns an error message
(message not 'OK')

Note that for sensors which contain pulse records, which are calculated
across 15 minute intervals, the latest record date will be the earlier of the last
transmission date and the end of the previous 15 minute window.

Note also that the response is independent of the supplied request_date.

Appendix

Error Codes

The following is a list of the typical error codes that may be given by the API.

Status Message Explanation

400 Payload Empty

The payload contained no data at all.

401 Authentication
failed

Either the token did not match any
configured in Realtime Online, or the hash
that the server calculated from the request
and the secret key did not match the one
provided in the HTTP header.

401 Missing hash
header

The HTTP header specifying the hash of the
payload and secret key was missing from the
request (or possibly misspelt).

401 Missing token
header

The HTTP header specifying the API token
was missing from the request.

 14

403 The specified
request date is in
the future

The request_date field specifies a date that
is too far ahead of the time on the server.

403 The specified
request date is
too old

The request_date field specifies a date that
is too far behind the time on the server.

404 Unknown Action

The action field specifies an action which
does not exist.

413 Payload Too
Large

The payload was larger than the maximum
permitted by the API: 2,000,000 bytes.

415 Could not
decode
payload '' as
JSON:

The JSON decoder failed to decode the
payload. The payload is given in the error
message, so if this is empty there has been
some error getting the payload into the
body of the request.

415 Expected a JSON
object, got some
other
type

The payload was valid JSON but it wasn't an
object. All requests are required to be an
object.

429 Exceeded
number of
requests per day

Usage of the API for the given token is being
throttled, because too many requests have
been made in a rolling 24 hour window.

429 Exceeded
number of
requests per ten
minutes

Usage of the API for the given token is being
throttled, because too many requests have
been made in a rolling 10 minute window.

In addition to this, a 400 error might also include a message indicating a
required parameter which has been missed, or does not correspond to a
configured system, or sensor, etc. This will be detailed in the optional Failure
Response, if present.

Failure Response

The below is an example error response for a 404 error. This error occurs
because the requested action is not recognised by the API.

{

 15

 "status": 404,
 "code": 1,
 "message": "Unknown Action",
 "request_date": "2020-10-13T16:52:10+01:00",
 "request_payload": {
 "action": "fakeAction",
 "request_date": "2020-10-13T17:52:10+02:00",
 "systems": [
 {
 "system_id": 2571,
 "sensors": [
 {
 "sensor_id": "11000005800001",
 "start_date": "2020-09-21T07:27:00+00:00",
 "end_date": "2020-09-21T15:59:00+00:00"
 }
]
 }
]
 }
}

The 400 error below occurs because part of the requested data was not
available (because one of the requested sensors is not available on this
system - an invalid sensor ID is passed).

Note that the error response follows the same structure as the original request.

{
 "status": 400,
 "message": "Failed with errors",
 "request_date": "2020-10-13T16:52:10+01:00",
 "request_payload": {
 "action": "getRecords",
 "request_date": "2020-10-13T17:52:10+02:00",
 "systems": [
 {
 "system_id": 2571,
 "sensors": [
 {
 "sensor_id": "1",
 "start_date": "2020-09-21T07:27:00+00:00",
 "end_date": "2020-09-21T15:59:00+00:00"
 },
 {
 "sensor_id": "11000005800001",
 "start_date": "2020-09-21T07:27:00+00:00",
 "end_date": "2020-09-21T15:59:00+00:00"
 }
]
 }
]
 },
 "systems": [
 {
 "system_id": 2571,
 "code": 0,
 "message": "OK",
 "detail": "",
 "sensors": [

 16

 {
 "sensor_id": "1",
 "code": 30,
 "message": "Sensor does not exist or is not
accessible",
 "detail": ""
 },
 {
 "sensor_id": "11000005800001",
 "code": 0,
 "message": "OK",
 "detail": ""
 }
]
 }
]
}

The 400 error below occurs because part of the requested data was not
available (because one of the requested systems is not available to this API
key).

Note that the response does not contain any sensors for the failed system.
The server does not process a given object any further once it encounters
errors.

{
 "status": 400,
 "message": "Failed with errors",
 "request_date": "2020-10-13T16:52:10+01:00",
 "request_payload": {
 "action": "getRecords",
 "request_date": "2020-10-13T17:52:10+02:00",
 "systems": [
 {
 "system_id": 9999999999999,
 "sensors": [
 {
 "sensor_id": "6322905",
 "start_date": "2020-09-21T07:27:00+00:00",
 "end_date": "2020-09-21T15:59:00+00:00"
 }
]
 },
 {
 "system_id": 2571,
 "sensors": [
 {
 "sensor_id": "6322905",
 "start_date": "2020-09-21T07:27:00+00:00",
 "end_date": "2020-09-21T15:59:00+00:00"
 }
]
 }
]
 },
 "systems": [
 {
 "system_id": 9999999999999,

 17

 "code": 20,
 "message": "System does not exist or is not accessible",
 "detail": ""
 },
 {
 "system_id": 2571,
 "code": 0,
 "message": "OK",
 "detail": "",
 "sensors": [
 {
 "sensor_id": "6322905",
 "code": 0,
 "message": "OK",
 "detail": ""
 }
]
 }
]
}

Each object present in the response will contain code, message and detail,
which correspond to the table below. It will also contain as much of the
original request as possible, usually including, for example, system_id or
sensor_id.

If the object has a code other than 0 - i.e. a failure code, any nested arrays
or objects will be absent from the failure response.

The detail field contains human-readable error detail to give further context
to the error codes, for example to note which parameter is missing/invalid.

Code Message Explanation

0 OK

The component did not return any error

1 Invalid

The requested component does not exist or
is not available. This is a generic error.

10 Required
parameter missing

A required section of the request body is
missing. See detail for more information.

11 Parameter type is
invalid

The supplied parameter type does not
match the required type.

20 System does not
exist or is not
accessible

The requested system does not exist, or
cannot be accessed with these API
credentials.

 18

30 Sensor does not
exist or is not
accessible

The requested sensor does not exist on the
requested system / with these API
credentials.

Note that future versions of this API may add additional failure response
codes and associated failure response messages. Code 0 (OK) will be the
only success code.

Additional Resources

Demonstration implementations of this API are available from Invisible Systems
Ltd. on request.

A PHP implementation should usually be bundled with this document.

Additionally, a minimal example written in Javascript is available on JS Fiddle

A minimal python (Python 3) implementation is included below. This can be
run out of the box on Google Colab.

#pip3 install requests

import requests
import json
import hashlib
import datetime

url = "https://www.realtime-online.com/api/v3/json/"
token = "134ee7b730bd"
secretKey = "asdf5%123456"

Form the request, in this example, getting all sensors for the listed
system IDs
request_body = {
 "action": "getSensors",
 "request_date": datetime.datetime.now().isoformat(),
 "systems": ["2571"]
}

As specified in the Authentication section
magicString = json.dumps(request_body) + secretKey
contentHash = hashlib.sha256(magicString.encode()).hexdigest()
headers = {
 "X-RT2-API-Token": token,
 "X-RT2-API-Hash": contentHash
}

resp = requests.post(url, data=json.dumps(request_body), headers=headers)

jsonResp = json.loads(resp.text)
print(json.dumps(jsonResp, indent=4))

